131 research outputs found

    Five-level selective harmonic elimination PWM strategies and multicarrier phase-shifted sinusoidal PWM: A comparison

    Get PDF
    The multicarrier phase-shifted sinusoidal pulse-width modulation (MPS-SPWM) technique is well-known for its important advantage of offering an increased overall bandwidth as the number of carriers multiplied with their equal frequency directly controls the location of the dominant harmonics. In this paper, a five-level (line-to-neutral) multilevel selective harmonic elimination PWM (MSHE-PWM) strategy based on an equal number of switching transitions when compared against the previously mentioned technique is proposed. It is assumed that the four triangular carriers of the MPS-SPWM method have nine per unit frequency resulting in seventeen switching transitions for every quarter period. Requesting the same number of transitions from the MSHE-PWM allows the control of sixteen non-triplen harmonics. It is confirmed that the proposed MSHE-PWM offers significantly higher converter bandwidth along with higher modulation operating range. Selected results are presented to confirm the effectiveness of the proposed technique

    Calculating the interior permanent-magnet motor

    Get PDF
    This paper describes the calculation of torque in a brushless permanent-magnet line-start AC motor by means of the flux-MMF diagram in combination with the finite-element method. Results are compared with measured flux-MMF diagrams, with shaft torque measurements, and with torque calculated using the classical phasor diagram

    A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive

    Get PDF
    This paper describes the use of the current–flux-linkage (ipsii{-}psi ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant ipsii{-}psi loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms

    Performance estimation of interior permanent-magnet brushless motors using the voltage-driven flux-MMF diagram

    Get PDF
    The flux-magnetomotive force (flux-MMF) diagram, or "energy conversion loop," is a powerful tool for computing the parameters of saturated interior permanent-magnet brushless motors, especially when the assumptions underlying classical dq theory are not valid, as is often the case in modern practice. Efficient finite-element computation of the flux-MMF diagram is possible when the motor current is known a priori, but in high-speed operation the current regulator can lose control of the current waveform and the computation becomes "voltage-driven" rather than "current-driven." This paper describes an efficient method for estimating the motor performance-average torque, inductances-by solving the voltage-driven problem. It presents experimental validation for a two-pole brushless interior permanent-magnet motor. The paper also discusses the general conditions under which this method is appropriate, and compares the method with alternative approaches

    Line-start permanent-magnet motor single-phase steady-state performance analysis

    Get PDF
    This paper describes an efficient calculating procedure for the steady-state operation of a single-phase line-start capacitor-run permanent-magnet motor. This class of motor is beginning to be applied in hermetic refrigerator compressors as a high-efficiency alternative to either a plain induction motor or a full inverter-fed drive. The calculation relies on a combination of reference-frame transformations including symmetrical components to cope with imbalance, and dq axes to cope with saliency. Computed results are compared with test data. The agreement is generally good, especially in describing the general properties of the motor. However, it is shown that certain important effects are beyond the limit of simple circuit analysis and require a more complex numerical analysis method

    Embedded finite-element solver for computation of brushless permanent-magnet motors

    Get PDF
    This paper describes the theory underlying the formulation of a “minimum set” of finite-element solutions to be used in the design and analysis of saturated brushless permanent-magnet motors. The choice of finite-element solutions is described in terms of key points on the flux–MMF diagram. When the diagram has a regular shape, a huge reduction in finite-element analysis is possible with no loss of accuracy. If the loop is irregular, many more solutions are needed. This paper describes an efficient technique in which a finite-element solver is associated with a classical ddqq-axis circuit model in such a way that the number of finite-element solutions in one electrical half-cycle can be varied between 1 and 360. The finite-element process is used to determine not only the average torque but also the saturated inductances as the rotor rotates

    Simulation and Analysis of Magnetisation Characteristics of Interior Permanent Magnet Motors

    Get PDF
    Modern permanent magnet (PM) synchronous brushless machines often have magnetic circuits in which the patterns of saturation are complex and highly variable with the position of the rotor. The classical phasor diagram theory of operation relies on the assumption of sinusoidal variation of flux-linkage with rotor position, and neglects the non-linear effects that arise in different operating states. The finite element method is a useful tool for detailed magnetic analysis, but it is important to verify simulation results by direct measurement of the magnetic characteristics of the motor, in terms of “magnetisation curves” of current and flux-linkage. This paper presents results from finite element simulations to determine the magnetisation in a split-phase interior permanent magnet (IPM) motor. Investigation has been made to determine the effects of the rotor geometry on the synchronous reactances and airgap flux distribution. Comparisons are made with a second IPM motor with a different rotor configuration.

    Recent Developments in the Use of Flow Hydrogenation in the Field of Medicinal Chemistry

    Get PDF
    This chapter focuses on recent applications of flow hydrogenation in medicinal chemistry. Flow reactors can enhance laboratory safety, reducing the risks associated with pyrophoric catalysts, due to their containment in catalyst cartridges or omnifit columns. Flow hydrogenation reduces the risks arising from hydrogen gas, with either hydrogen generated in situ from water, or precise management of the gas flow rate through tube-in-tube reactors. There is an increasing body of evidence that flow hydrogenation enhances reduction outcomes across nitro, imine, nitrile, amide, azide, and azo reductions, together with de-aromatisation and hydrodehalogenation. In addition, olefin, alkyne, carbonyl, and benzyl reductions have been widely examined. Further, protocols involving multistage flow reactions involving hydrogenation are highlighted

    Fault-tolerant operation of single-phase SR generators

    Full text link
    corecore